In this article we will discuss dot multiplication which produces scalar and cross multiplication which produces vector magnitude , along with Questions and Solutions dot multiplication and vector cross multiplication.
A. Multiplication of Dot (.)
Example vector →A=(Ai+Aj+Ak) and vektor →B=(Bi+Bj+Bk) wherein the two vectors forming an angle of θ, so:
→A.→B=|→A||→B|cosθ
with:
|A|=√A2i+A2j+A2k|B|=√B2i+B2j+B2k
Dot Multiplication (dot multiplication) Algebraically
→A.→B=Ai.Bi+Aj.Bj+Ak.Bk
dot multiplication result:
i.i=j.j=k.k=1i.j=j.k=j.k=0
B. Multiplication Cross (×)
In cross multiplication, the symbol 'x' is used. Let vector →A=(Ai+Aj+Ak) and vektor →B=(Bi+Bj+Bk). so:
A×B=|A||B|sinθ
with:
|A|=√A2i+A2j+A2k|B|=√B2i+B2j+B2k
To make it easier for friends to understand the Cross Operation (×), see the picture below, in the direction of the positive arrow, opposite the negative arrow.Thus we can write:
i×j=+k, j×i=−kk×i=+j, i×k=−jj×k=+i, k×j=−iwith:i×i=j×j=k×k=0
C. Dot and Cross Multiplication Questions and Solutions
Problem: 1. Know the vector →A=(3,−5,4) and →B=(−2,1,2). . Find the sine of the angle between the vectors →A and →B! !
Vector solution:
angle value:
cosθ=→A.→B|→A||→B|=−6−5+8√32+(−5)2+42.√(−2)2+12+22=−3√50.√9=−35√2.3=−15√2
With the formula of trigonometric identity sin2θ+cos2θ=1 , so:sin2θ+cos2θ=1sin2θ=1−cos2θsinθ=√1−cos2θ=√1−(−15√2)2=√1−150=√4950=75√2=0,7√2
Problem: 2. Given a vector:
Since →A is perpendicular to →C , then →A.→C=0.
a. Value →A(→B+→C)
→A(→B+→C)=→A.→B+→A.→C=|→A||→B|cos60∘+0=4.3.12=6
b. Value →A(2→C−3→B)
→A(2→C−3→B)=2(→A.→C)−3(→A.→B)=2.0−3|→A||→B|cos60∘=0−3.4.3.12=−18
cosθ=→A.→B|→A||→B|=−6−5+8√32+(−5)2+42.√(−2)2+12+22=−3√50.√9=−35√2.3=−15√2
With the formula of trigonometric identity sin2θ+cos2θ=1 , so:sin2θ+cos2θ=1sin2θ=1−cos2θsinθ=√1−cos2θ=√1−(−15√2)2=√1−150=√4950=75√2=0,7√2
Problem: 2. Given a vector:
→A=(2i+3j−4k)→B=(i−2j+3k)→C=(i−10j−7k)
so →A×→B dan (→A×→B)×→C is...
Vector solution:
→A×→B=(2i+3j−4k)×(i−2j+3k)=−4k−6j−3k+9i−4j−8i=i−10j−7k(→A×→B)×→C=(i−10j−7k)×(i−j+k)=−k−j+10k−10i−7j−7i=−17i−8j+9k
A, B, C = besar vektor A, B, C
i, j, k = unit vector for the x, y, z axes
Problem: 3. If vectors →A and →B form an angle of 60 , and vector →A is perpendicular to vector →C , with|→A|=4 , |→B|=3 , dan |→C|=6, then specify:
A, B, C = besar vektor A, B, C
i, j, k = unit vector for the x, y, z axes
Problem: 3. If vectors →A and →B form an angle of 60 , and vector →A is perpendicular to vector →C , with|→A|=4 , |→B|=3 , dan |→C|=6, then specify:
- →A(→B+→C)
- →A(2→C−3→B)
Since →A is perpendicular to →C , then →A.→C=0.
a. Value →A(→B+→C)
→A(→B+→C)=→A.→B+→A.→C=|→A||→B|cos60∘+0=4.3.12=6
b. Value →A(2→C−3→B)
→A(2→C−3→B)=2(→A.→C)−3(→A.→B)=2.0−3|→A||→B|cos60∘=0−3.4.3.12=−18
Hope it is useful. regards..!